
Face Recognition System based on Deepface
Bin Huang 12012910 Qiang Hu 12111214 Qijia He 12111211

I Introduction

As the era advances, facial recognition is gradually
becoming an increasingly popular field. Traditional facial
recognition algorithms rely on a single statistical model,
feature matching, and texture analysis, which pose certain
problems and challenges. In recent years, with the widespread
application of deep learning in the field of images, it has been
discovered that utilizing deep learning algorithms often yields
better performance in facial recognition. Prominent methods
that have been proposed and widely acclaimed include VGG-
Face and FaceNet. The modern process of facial recognition
primarily consists of four stages: detection, alignment, repre-
sentation, and verification. As is an open-source deep learning
toolkit for facial recognition that integrates previous models.
deepface provides a simple and user-friendly interface for
facial recognition, detection, and identification of attributes
such as emotions, gender, race, and age.

Fig. 1: framework: our project

In our project, we primarily rely on the DeepFace frame-
work to build facial recognition and facial analysis systems
(This can be worked in our GUI by running main.py). By
leveraging online resources and our own curated datasets, we
conduct experiments and comparisons to assess the detection
and analysis performance of the models on different datasets
(see /interesting/experimemt.ipynb).

For more details, you can directly visit our
open-source project on GitHub. The specific link
to the project Fae42/cv-final-project is as follows:
https://github.com/Fae42/cv-final-project

II Related Works

DeepFace can be broadly divided into two parts: image
recognition and image analysis. Its construction is heavily re-

liant on previous research in the field. Prior to the introduction
of DeepFace, there was a significant amount of work done
on face recognition and facial attribute analysis. Here we list
several key contributions in this area:

• VGG-Face model: VGG-Faces is a deep convolutional
neural network model developed by the Visual Geometry
Group team at the University of Oxford in 2015. This
model demonstrates high performance and accuracy in
large-scale face recognition tasks.
https://github.com/rcmalli/keras-vggface

• FaceNet: FaceNet is a model developed by Google in
2015, based on deep learning and neural network tech-
nologies. It introduces a triplet loss function to train
neural network models. This further reduces intra-class
variations and inter-class differences in face recognition,
enhancing the discriminative capability of the face recog-
nition model.
https://github.com/davidsandberg/facenet.

• OpenFace: OpenFace implements automatic facial be-
havior analysis. As the first toolkit capable of facial
landmark detection, head pose estimation, facial action
unit recognition, and eye-gaze estimation with available
source code for both running and training the models.
OpenFace provides a valuable reference for the develop-
ment of deepface affective attribute analysis.
https://github.com/cmusatyalab/openface

• Dlib: Originally proposed in 2002 and continuously im-
proved thereafter, the Dlib library is capable of achieving
precise face detection and keypoint localization. By accu-
rately detecting the position of faces and their key points,
Dlib provides a foundation for subsequent facial attribute
analysis.
https://github.com/davisking/dlib

• Other related works: DeepID, DeepFace, LightFace...

III Framework

A. Framework of deepface

Realised in 2019, DeepFace is built on top of
multiple models, integrating various state-of-the-art mod-
els, like VGG-face, Arcface, and so on. It has con-
tinuously evolved and improved over time. Here are
the model frameworks that DeepFace offers on GitHub,
which is an open-source platform: [[serengil/deepface: A
Lightweight Face Recognition and Facial Attribute Analy-
sis (Age, Gender, Emotion and Race) Library for Python
(github.com)](https://github.com/serengil/deepface)]

Fig. 2: framework: deepface

Seen from Fig.2, now we give a clear insight of the
structure of DeepFace.

Within the base models, for each model like FaceNet,
ArcFace, etc., pre-trained model parameters are directly down-
loaded from GitHub for facial detection. The extended models
employ CNN classification and regression methods to predict
facial age, race, emotions, and gender. The weights and
parameters of each convolutional neural network are derived
from pre-trained models available on GitHub. The commons
folder primarily includes essential utility functions, such as
calculating the Euclidean distance between vectors, cropping
images after face recognition, and facial attribute analysis
(which calls the main function of DeepFace). The detector
folder implements positional face detection, supporting the im-
plementation of functions.extract_faces in commons. Finally,
DeepFace.py encapsulates all of these methods, enabling
efficient, fast, and simple implementation of facial detection
and related tasks.

DeepFace provides several commonly used functions,
including DeepFace.find(): for finding the best matching
image in a database for an input image, DeepFace.verify():
for verifying if two images belong to the same person.
DeepFace.stream(): for detecting faces in a video stream
while analysis the face’s attributes. DeepFace.detection():
for locating faces in an image, and DeepFace.analysis(): for
analyzing facial attributes, predicting the target face’s age,
gender, emotions, and race using regression and classification
methods. In the next section, we will provide a detailed
explanation of these functions.

B. Framework of our project

In our project, we mainly divided it into three folders:
GUI, testprecision, and interesting. Within the GUI folder,
there are five Python code files that are connected to the
main.py file to implement the basic facial recognition system.

The test_precision folder is dedicated to testing the accu-
racy of facial recognition on three different datasets. In the
interesting folder, we built our own dataset called ourfaces
and performed facial recognition within the database using
the ourfacedetection.py file. We conducted model testing on
our dataset and performed a simple analysis of the test results
in the experiment.ipynb file. The results of the analysis are
stored in the analysis folder. Fig.3 gives a clear outlook of the
framework of our project

Fig. 3: framework: our project

IV Useful Functions (Method)

A. Image Face Detection

DeepFace.extract_faces()
• Input:

– img_path: the path of one image that need to be
detected faces from.

– other parameters:target_size, detector_backend,
grayscale, enforce_detection, align
Note: the enforce_detection (T/F), if set to T, we
will perform Rigorous face detection, otherwise the
detection wil be rough, which means we might have
some non-face objects regarded as faces.

• Output
– a list of dictionaries, in each of which is a detected

face including subimage of face, parameters foe
bonding box and confidence.

• Realizations: This model relies on keypoint de-
tection for face recognition, and keypoint detec-
tion depends on OpenCV. Deepface uses OpenCV’s
cv2.dnn.readNetFromCaffe() to load the network struc-
ture of a pre-trained Caffe model and build a DNN

network. It then utilizes cv.dnn.blobFromImage() to
infer the Binary Large Object of the input image, aiding
in keypoint detection.

Once keypoints (eyes) are detected, further face
detection is performed through image alignment. The
specific alignment method is as follows:

• 3 steps to align the face
– Find the position of eyes for each face using algo-

rithm in OpenCV.

Fig. 4: Example: Image alignment

– According to Fig.4, calculate the angle between the
hypotenuse and the horizontal side by the following
formula.

cosA =
b2 + c2 − a2

2bc

– Rotate the face according to angle A. For Fig.4, we
rotate the image counterclockwise.

B. Image feature extraction

DeepFace.represent()
• Input:

– image_path: the path to the image
– other parameters: model_name, enforce_detection,

detector_backend, align, normalization
• Output:

– a zip that contains the feature vector of the aligned
image, bounding boxes of faces and its correspond-
ing confidence score

• Realizations
After we aligned the image(as shown in section

A), we start to extract feature vectors. The process
of extracting feature vectors mainly relies on different
algorithmic models proposed by previous researchers.
The core of these models involves using convolutional
neural networks for feature extraction. However, different
models have distinct network structures and feature vector
dimensions. The specific parameters are shown in the
table below. Once a model is chosen, the pre-trained

model available on GitHub can be utilized to directly
extract the corresponding feature attributes.

Fig. 5: alignment

C. Face Verification

DeepFace.verify()
• Input:

– img1_path: the path of one image that need to be
tested

– img2_path: the path of the other image that need to
be tested

– other parameters: model name, distance metric,
align, normalization, enforce_detection, detector_-
backend, silent

• Output:
– a zip that contains verify result, distance, threshold,

selected model and some other parameters that might
be useful

• Realizations:
Calculate the distance between the feature vectors

extracted from two images. the process of feature extrac-
tion calls the function DeepFace.represent(). The larger
the distance between the feature vectors, the greater the
difference between the images. Use the decision tree
algorithm to determine the optimal threshold value. When
the threshold is higher than true value, we consider the
two images to be the same image. Here we show two
typical ways to calculate distance:

• 2 ways to calculate distance
– euclidean distance:

d(x, y) =

√√√√ n∑
i=1

(xi = yi)2

– cosine distance:

Dc(x, y) = 1− cosθ = 1−
∑n

i=0 xiyi√∑n
i=0 x

2
i

√∑n
i=0 y

2
i

D. Face Matching

DeepFace.find()
• Input:

– img_path: the path of the image that need to be tested
– db_path: the path to the dataset
– other parameters: model_name, distance_metric,

align, normalization, enforce_detection, detector_-
blacked, silent

• Output:

– a list of images that have person which is similar to
the input image. In each image, we have: image’s
path, bounding boxes of faces, and confidence score

• Realizations
Similar to DeepFace.verify(), we calculate the

similarity scores between the input image and each
image in the database, sort them, and output the top few
images with the highest similarity.

E. Stream Face Recognition

DeepFace.stream()
• Input:

– db_path:facial database path used for verification
– source:the path of exact video, access web camera if

set this to zero.
– other parameters: model_name, detecter_backend,

distance_metric, enable_facial_analysis,
time_threshold, frame_threshold.

• Output:
– a window to show the results of recognition and anal-

ysis of every several(depends on frame_threshold)
frames.

• Realizations:
For each frame that to be detected, confirm if

there’s a face in it by extract_faces(). If so, use find()
and analyze() to confirm its identity and analyze other
information.

F. Feature Extraction

DeepFace.analyze()
• Input:

– img_path: exact image path, numpy array (BGR) or
base64 encoded image could be passed. If source
image has more than one face, then result will be
size of number of faces appearing in the image.

– actions (tuple): The default is (’age’, ’gender’, ’emo-
tion’, ’race’). Can be used to dropsome of those
attributes.

– enforce_detection (bool): The function throws excep-
tion if no face detected by default.

– detector_backend (string): set face detector backend
to opencv, retinaface, mtcnn, ssd, dlib or mediapipe.

– silent (boolean): disable (some) log messages
• Output:

– a list of dictionaries for each face appearing in the
image.

• Realizations:
Build the required models by actions. The age,

gender and race prediction model were built on the base
VGG-Face model.

Fig. 6: VGG-Face structure

The structure of emotion model is shown in Fig. 7.

Fig. 7: emotion model structure

Calls extract_faces() function to detect and cut faces
using a face detector(OpenCV by default). Using each
model to predict corresponding attribute. These problems
are defined as classification tasks. It should be noted that
each output score of age model will be multiplied by
the corresponding age. In this way, we can predict the
apparent age.

V Experiment

A. Performance Evaluation: A Literature review

The development team of Deepface has conducted perfor-
mance analysis during the research process of Deepface. Here,
let’s first review a series of results achieved by the Deepface
team in performance analysis.

For most machine learning models, the evaluation
of their performance relies primarily on metrics such as
precision, recall, and the confusion matrix. The specific
definitions of precision rate and recall rate are as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN

In their previous work, they primarily used recall rate,
precision rate, confusion matrix, and distribution graphics as
measurement evaluation tables. By testing these metrics on
different models using their dataset, we can clearly observe
the performance of Deepface in practical applications. For the
rest of this section, we will introduce their test results one by
one.

As mentioned in IV about DeepFace.verify(), decision
tree algorithms are used to find the best threshold, the corre-
sponding optimal performance for each model is shown below

Fig. 8: performance

According to the outcomes, the FaceNet model is of the
highest precision and recall among all these model, and the
best case is 100 precision and 97.14 recall under Euclidean
metric.

This distribution graphic is estimated by kernel density
estimation(KDE). It shows the distribution of each single
model metric pair for yes and no classes and the robustness
of each model as well.

Fig. 9: distribution graphic

It can also be observed from the distribution graphic that
the FaceNet model has the best robustness, since the two peaks
are remarkably separated.

The confusion matrix for face analysis model shows the
details of accuracy and error on each classes for the model.
The confusion matrix for gender model(including 2 classes,
man and woman) has been calculated as followed.

Fig. 10: confusion matrix for gender model

Gender prediction model has 97.44% accuracy on the
ICCV’15 test set and relatively high precision and recall,
which is shown in the table.

The confusion matrix for race/ethnicity model(6 classes
including Asian, Indian, Black, White, Middle Eastern and
Latino Hispanic) and emotion model(7 classes including An-
gry, Disgust, Fear, Happy, Sad, Surprise, Neutral) has been
also calculated as followed.

Fig. 11: confusion matrix for race/ethnicity model

The accuracy of race/ethnicity model has 68% accuracy.
The precision and recall for White and Middle Eastern is
relatively low, while others have relatively high precision and
recall.

Fig. 12: confusion matrix for emotion model

The accuracy of emotion model is 57.42%. The precision
and recall of Happy and Surprise is the highest, while the
performance of others are almost the same.

B. Experiment: Evaluations based on our data

After the literature review, we try to briefly test this
model in different datasets, and even build our own dataset.
The result of which are as follows. We first selected three
datasets to reproduce the performance of Deepface in face
detection. The three datasets include the positive face samples
from Assignment 4, the sample data from VGG-Face, and the
LFW dataset. By calculating the precision rate on each dataset,
we obtained the following results:

Fig. 13: precision in different datasets

It can be observed that Deepface achieves a higher
accuracy rate on the LFW dataset, exceeding 97%, while it
performs relatively poorly on the Assignment 4 dataset. This
is attributed to the low resolution of the data, where the
face size is only 36x36 pixels.

Then we started building our own dataset. Each team
member contributed more than 20 personal face photos, and
we added 12 noisy face images, resulting in a small face
dataset of 71 photos (available at github/interesting/our_faces).
On this dataset we performed further operations and process-
ing on the model. The specific code implementation can be
found in the experiment.ipynb file. First, we calculate the
precision rate of the results, following the same procedure as
mentioned above: we input each image into Deepface.extract_-
faces(), and if no errors occur, we count the number of errors
to calculate the specific value of precision. In our dataset, the
precision rate is 73%. Next, we find out all the unrecognized
faces, as shown in the image below.

Fig. 14: unrecognized faces

From the image, we observe that the majority of unrec-
ognized faces have noticeable head tilts, while a small portion
only partially exposes the face. Hats (nosie11, huqiang8), sun-
glasses (nosie5), and lighting conditions (heqijia5, heqijia15)
introduce certain interference to face recognition. Additionally,
we noticed that a significant number of unrecognized faces
have their eyes closed. This can be attributed to Deepface
relying on eyes as key points for alignment and detection.

After completing the basic precision detection, we further
generated a confusion matrix for the detection results. The
specific form of the matrix is shown below. The additional
dimension on the row of the 5x4 matrix represents the images
where the faces were not recognized. From the image, we
can conclude that the recall rate and precision rate for each
face detection are approximately between 73% and 95%. The
correct recognition rate for the noisy images is relatively low,
with a higher occurrence of misclassifications. (Note: There
are only three images that were not detected here, unlike
before (detecting rate = 73%). This is because enforce_detec-
tion=False was set here to increase the probability of correct
identification).

Fig. 15: unrecognized faces

Meanwhile, we compared the confusion matrices of six
models (VGG, FaceNet, DeepID2, Dlib, OpenFace, DeepFace)
but found that their confusion matrices were completely iden-
tical (see BigMatrix in the code). We attributed this to the
limited amount of face data used in the dataset.

Now we move a step forward to attribute analysis.
First, we iterate through all the images and apply Deep-

face.analysis() to each image. We store all the extracted
features in a list. Then, we extract the facial attributes from
the list, sum up the corresponding elements, and output the
normalized values using the Min-Max Scaling method (with
gender normalized by dividing by the sum of all values, while
age is not normalized). Below are the results of the facial
attributes of our group member’s faces

Fig. 16: distributions of predicted age

Fig. 17: emotion

Fig. 18: race

Fig. 19: gender

From the chart above, it can be observed that Deep-
Face.analysis() has high accuracy in sentiment analysis, racial
analysis, and gender analysis, with low variance in the data.
This indicates that the distances between different categories
of faces are relatively large, resulting in a lower probability of
misclassification. However, in age recognition, it seems that
each person in our group appears to be 5 to 10 years older.
Additionally, there is a high variance in the data. This is likely
due to the fact that facial changes are relatively small after
adulthood. In terms of age prediction, there is still significant
room for improvement in the current attribute analysis method.

Overall, whether it is the experimental data provided
by the DeepFace team or our own experimental data, we
have achieved relatively good results in terms of the test
outcomes. However, our dataset is relatively small and limited
in diversity, which prevents us from providing comprehensive
and accurate model predictions. If we can further expand the
dataset by including data from different races, genders, and age
groups, we believe that the results will be more convincing

VI Graphic User Interface(GUI)

The GUI is divided into six parts, including main page,
face attribute, video face detector, image face detector, face

matching and face verification. All these six parts are built on
the PyQt5 framework.

The main page contains five buttons.

Fig. 20: Main page

Each button is connected to a corresponding function.
When a button is clicked, the main page will awake a new
window and close itself. We take face attribute as an example.

Fig. 21: Face attribute function

Selected image or video will be shown in the preview
box. They will be send to DeepFace.analyze() after clicking
the Start button. Once it finish working, the result will update
in the GUI window.

Fig. 22: Face attribute result

The back button on the upper left can be used to go back
to main page. To be specific, the face attribute window will
awake main page window and close itself after the button is
clicked. Then user can enter other functions without re-running
the .py file.

VII Conclusion

A. Advantages:

Our facial detection system, based on the deepface frame-
work model, performs well in most cases. As long as the
face is properly aligned, it can detect and identify individuals
accurately. After setting up the model, facial recognition
typically takes only one second, and feature analysis is com-
pleted quickly. It is highly practical. Additionally, the model
parameters are pre-trained online, eliminating the need for
local training. Implementing face detection requires just a few
lines of code, making it simple and easy to use.

B. Disadvantages:

Although the model exhibits high precision rates, we
observed a significant decline in facial recognition perfor-
mance when encountering various pose variations, as shown
in Fig.14. Additionally, the deepface.analysis() results indicate
relatively poor performance in emotion and race prediction,
and our findings from Fig.16 demonstrate subpar performance
in age prediction, with the model only able to predict rough
age ranges. These areas require improvement and further
development.

C. Future work:

Our team suggests two potential improvements to en-
hance facial prediction accuracy:

• Incorporating additional keypoint detection: As depicted
in Fig.14, numerous faces with closed eyes were not suc-
cessfully detected, primarily because the deepface.face_-
extraction relies on eyes as keypoints for detection and
alignment. Occlusion caused by closed eyes or sunglasses

makes it challenging to detect faces. By incorporating
more keypoints such as the nose, mouth, and ears, the
detection rate is expected to improve.

• Conducting category-based training on the test data:
Divide the head images into several categories, such as
tilted head, wearing a hat, or wearing sunglasses, and
train the model accordingly. This approach will make the
model more sensitive to unique facial situations.

References

[1] S. I. Serengil and A. Ozpinar, "LightFace: A Hybrid Deep Face
Recognition Framework," 2020 Innovations in Intelligent Systems and
Applications Conference (ASYU), Istanbul, Turkey, 2020, pp. 1-5, doi:
10.1109/ASYU50717.2020.9259802.

[2] S. I. Serengil and A. Ozpinar, "HyperExtended LightFace: A Facial
Attribute Analysis Framework," 2021 International Conference on En-
gineering and Emerging Technologies (ICEET), Istanbul, Turkey, 2021,
pp. 1-4, doi: 10.1109/ICEET53442.2021.9659697.

[3] Serengil, S., & Ozpinar, A. (2023). An Evaluation of SQL and NoSQL
Databases for Facial Recognition Pipelines. Cambridge Open Engage.
doi:10.33774/coe-2023-18rcn This content is a preprint and has not been
peer-reviewed.

[4] Y. Taigman, M. Yang, M. Ranzato and L. Wolf, "DeepFace: Closing
the Gap to Human-Level Performance in Face Verification," 2014 IEEE
Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 2014, pp. 1701-1708, doi: 10.1109/CVPR.2014.220.

VIII Contributions

• Bin Huang (12012910):
– code: main.py & attribute.py, GUI modification and

integration
– report: Method F & GUI & Conclusion & readme.md

(github)
– presentation: Method

• Qiang Hu (12111214):
– code: stream.py & detect.py
– report: Introduction & Method A, E & Experiment

A
– presentation: Experiment

• Qijia He (12111211):
– code: verify.py & find.py & ourface_detection.py &

experiment.ipynb
– report: Related Work & Framework & Method B,

C, D & Experiment B, report modification and
integration

– presentation: Introduction, framework and conclu-
sion

• Dataset: All the team members

	Introduction
	Related Works
	Framework
	Framework of deepface
	Framework of our project

	Useful Functions (Method)
	Image Face Detection
	Image feature extraction
	Face Verification
	Face Matching
	Stream Face Recognition
	Feature Extraction

	Experiment
	Performance Evaluation: A Literature review
	Experiment: Evaluations based on our data

	Graphic User Interface(GUI)
	Conclusion
	Advantages:
	 Disadvantages:
	Future work:

	References
	Contributions

