
Support Vector Mechine

Qiang Hu, Gengshang Dong, Pinzhao Li, Zhili Yang

June 3, 2023

Contents

1 Contribution 2

2 Background and Motivation 2
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Linearly separable case 3
3.1 Problem transformation . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Hard Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Soft Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Hard Margin vs. Soft Margin . . . . . . . . . . . . . . . . . . . . 7

4 Nonlinear separable case and Solving 8
4.1 Problem introduction . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Kernel trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Sequential Minimal Optimization . . . . . . . . . . . . . . . . . . 11

5 Coding 13
5.1 Soft Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Linear Indivisible and kernel Function . . . . . . . . . . . . . . . 13
5.3 Multiple Classification Problem . . . . . . . . . . . . . . . . . . . 16

1



1 Contribution

Qiang Hu Background, Motivation, Problem formulation
and code of SMO

Gengshang Dong Lagrangian and KKT of Hard Margin,
Soft Margin and contrast

Pingzhao Li Nonlinear separable case, Kernel function
and thoery of SMO

Zhili Yang Application and code of Soft Margin,
Linear Indivisible and Multiple Classification.

2 Background and Motivation

2.1 Background

Support Vector Machine (SVM) is a classic supervised learning algorithm
used for solving classification problems. The background of SVM can be traced
back to the development stages of the 1960s and 1970s, as well as the subsequent
theoretical and algorithmic breakthroughs in the 1980s and 1990s.

In the 1960s and 1970s, the focus of research in statistical learning theory
and machine learning was primarily on linear classification methods such as Per-
ceptron and Linear Regression. However, these methods had certain limitations
when it came to solving nonlinear classification problems.

In the 1980s, statistician Vladimir Vapnik and his colleagues began research-
ing the theoretical foundations of machine learning and proposed the theory of
statistical learning. This theory provided mathematical analysis of the proba-
bilistic guarantees and generalization capabilities of learning problems.

In 1989, Vladimir Vapnik and Alexey Chervonenkis published a paper ti-
tled ”On a Complexity of Learning,” introducing the concept of VC dimension
(Vapnik-Chervonenkis dimension), which measures the representational capac-
ity of a learning algorithm.

In 1992, Vladimir Vapnik and others published a paper titled ”A Training
Algorithm for Optimal Margin Classifiers,” formally presenting the basic ideas
and optimization algorithms of Support Vector Machine (SVM). They intro-
duced the concept of maximum margin classifiers, which construct classifiers by
maximizing the margin between samples, and employed techniques such as La-
grange multipliers and convex optimization to solve the optimization problem.

Subsequently, in 1995, Corinna Cortes and Vladimir Vapnik published a
paper titled ”Support-Vector Networks,” further refining the theory and algo-
rithms of SVM. This paper delved into the core ideas, characteristics, and gen-
eralization performance of SVM and introduced the kernel function approach,
enabling SVM to handle nonlinear classification problems.

2



2.2 Motivation

The core idea of SVM is to transform a classification problem into a convex
optimization problem. By maximizing the margin, SVM seeks a hyperplane
that can separate the samples and maximize the distance between different
classes, pushing the samples as far away from the hyperplane as possible. This
idea allows SVM to focus only on the samples that are closest to the decision
boundary, as they have a decisive impact on the position of the boundary. As
a result, compared to other classification algorithms, SVM exhibits stronger
robustness.

3 Linearly separable case

3.1 Problem transformation

Let’s assume that we have positive and negative sample points Xi and their
corresponding labels yi(= ±1). We need to train a hyperplane using these
sample points for classification. According to the SVM concept, we aim to
maximize the margin between positive and negative samples.

Figure 1: SVM Visualization

From the diagram, let’s assume the margin is 2d and the equation of the
plane at the center of the maximum margin region is:

WTX + b = 0 (1)

3



Figure 2: Problem Formulation

And the equations of the two planes defining the boundaries of the maximum
margin region are:

WTX + b

∥W∥
= d,

WTX + b

∥W∥
= −d (2)

Let:

W ′ =
W

∥W∥d
, b′ =

b

∥W∥d
(3)

After substituting W’ and b’ back, we can obtain the expressions for the
maximum margin hyperplane and the maximum margin as:

W ′TX + b′ = 0, 2d =
2

∥W ′∥
(4)

The constraint is that all sample points should be correctly separated by the
hyperplane. From the diagram, when the sample point is a positive sample,

W ′TXi + b′ ≥ 1 (5)

And when the sample point is a negative sample,

W ′TXi + b′ ≤ −1 (6)

Multiply by the corresponding label value yi, we can unify them as:

yi(W
′TXi + b′) ≥ 1 (7)

In summary, we have obtained an optimization problem:

max
W ′,b′

2

∥ W ′ ∥
s.t. yi(W

′ ·Xi + b′)− 1 ≥ 0,

i=1,2,· · · , n

4



For ease of solving, we can equivalently transform it into the following form
(avoiding the square root)[1]:

min
W ′,b′

1

2
∥ W ′ ∥2

s.t. yi(W
′ ·Xi + b′)− 1 ≥ 0, i = 1, 2, · · · , n

Note that this is a typical Quadratic Programming (QP) problem.

3.2 Hard Margin

Let’s start with a set of data points that we want to classify into two groups.
We can consider two cases for these data: either they are linearly separable, or
the separating hyperplane is non-linear. When the data is linearly separable,
and we don’t want to have any misclassifications, we use SVM with a hard
margin.

Therefore our optimization problem would become:

min
w,b

1

2
wTw

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, · · · , n

It is guaranteed to have a global minimum. We can solve this by introducing
Lagrange multipliers (αi) and convert it to its dual problem:

L(w, b, αi) =
1

2
wTw −

n∑
i=1

αi(yi(w
Txi + b)− 1) (8)

This is called the Lagrangian function of the SVM which is differentiable
with respect to w and b.

∇wL(w, b, α) = 0 ⇒ w =

n∑
i=1

αiyixi (9)

∇bL(w, b, α) = 0 ⇒
n∑

i=1

αiyi = 0 (10)

By substituting them in the second term of the Lagrangian function, we’ll
get the dual problem of SVM:

max
α

−1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi

s.t.

n∑
i=1

αiyi = 0

In the dual problem,we only need to solve the Lagrange multipliers α. Be-
sides, the dual problem depending on the inner products of the training data

5



is applicable when extending linear SVM to learn non-linear boundaries. To
continue solving the dual problem, we need to use Sequential Minimal Opti-
mization(SMO)(3.3).

3.3 Soft Margin

However, in practice, completely linearly separable samples are rare. When
a linear boundary is not feasible, or we want to allow some misclassifications
in the hope of achieving better generality, we can opt for a soft margin for our
classifier(Figure 3).

Figure 3: Allow some misclassifications to achieve better generality

For every sample point(xi, yi), we can introduce a slack variable ξi ≥ 0.
Guarantee the sum of function margin and the slack variable ξi ≥ 0, then the
constraints would be

yi(w · xi + b) ≥ 1− ξi

the target function would be

1

2
∥ w ∥2 +C

N∑
i=1

ξi

where C is a constant greater than 0, which can be understood as the penalty of
error sample, if C is infinite, slack variable ξi must be infinitesimal, so a linear
SVM becomes a linear separable SVM; Only when C is finite, will some samples
be allowed to not follow the constraint. According to this, we can adjust the
degree of error by setting the value of C.

The loss of a misclassified point is called a slack variable and is added to the
primal problem that we had for hard margin SVM. So the primal problem for
the soft margin is similar to equation(10):

6



min
1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi ∀i = 1, ..., n, ξi ≥ 0

As we can see, the difference between the primal problem and the one for
the hard margin is the addition of slack variables. The new slack variables (ξi)
add flexibility for misclassifications of the model.

By applying lagrangian multiplier method to problem (15), we can get its
dual problem[2]:

max
αi≥0

{
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj(xi · xj)}

s.t.

N∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, · · · , n

In the dual form, the difference is only the upper bound applied to the La-
grange multipliers. Meanwhile, according to its KKT condition, we can obtain:

αi = 0 ⇒ yi(w · xi + b) ≥ 1

αi = C ⇒ yi(w · xi + b) ≤ 1

0<αi<C ⇒ yi(w · xi + b) = 1

The first formula means that if αi = 0, then the sample falls outside the
two spaced lines. The second formula shows that if αi = C, then the sample
may fall inside or above the two spacing lines, mainly depending on the sign of
corresponding slack variable is equal to or greater than 0. The third formula
shows that if 0 < αi < C, then the sample must fall directly on the dividing
line.

3.4 Hard Margin vs. Soft Margin

The difference between a hard margin and a soft margin in SVMs lies in the
separability of the data. If our data is linearly separable, we go for a hard
margin. However, if this is not the case, it won’t be feasible to do that. In the
presence of some data points that make it impossible to find a linear classifier,
we would allow some of the data points be misclassified. In this case, a soft
margin SVM is appropriate.

Sometimes, the data is linearly separable, but the margin is so small that
the model tends to overfitting or being too sensitive to outliers. Also, in this

7



case, we can opt for a larger margin by using soft margin to help the model
generalize better.

4 Nonlinear separable case and Solving

Certainly, so far our SVM has been relatively weak and can only handle linear
cases. However, after obtaining the dual form and extending it to non-linear
cases through the use of kernels, it becomes a very straightforward task.

4.1 Problem introduction

In fact, most of the time, data is not linearly separable, and in such cases,
it is impossible to find a hyperplane that satisfies this condition. As we have
discussed earlier, SVM handles linearly separable cases, but how does it deal
with non-linear data? In the case of non-linear data, SVM employs a method
called kernel trick. It involves selecting a kernel function K( , ) and mapping the
data to a higher-dimensional space to address the issue of linear inseparability
in the original space.

Figure 4: nonlinear separable case

Before encountering kernel functions, if we were to use the traditional ap-
proach, learning a nonlinear relationship with a linear learner would require
selecting a nonlinear feature set and transforming the data into a new represen-
tation. This is equivalent to applying a fixed nonlinear mapping that maps the
data to a feature space, and then using a linear learner in that feature space.
Therefore, the hypothesis set considered would be of this type:

f(x) =

N∑
i=1

wiϕi(x) + b

Here, ϕ : X to F represents the mapping from the input space to a certain
feature space. This means that constructing a nonlinear learner involves two

8



steps:Firstly, the data is transformed to a feature space F using a nonlinear
mapping.Then, a linear learner is applied in the feature space for classification.
Since the dual form is an important property of the linear learner, it implies
that the hypothesis can be expressed as a linear combination of the training
points. As a result, the decision rule can be represented using the inner product
between the test point and the training points:

f(x) =

ℓ∑
i=1

αiyi ⟨ϕ (xi) · ϕ(x)⟩+ b

4.2 Kernel trick

If there is a way to directly compute the inner product <ϕ(xi), ϕ(x)> in the
feature space, just like in the original input space, it would be possible to merge
the two steps and build a nonlinear learner. This approach, which allows for
direct computation in the feature space, is known as the kernel trick method.

Kernel functions can simplify the computation of inner products in the fea-
ture space, and coincidentally, in our SVM, the data vectors always appear in
the form of inner products. Comparing to the equation we wrote earlier, now
our classification function becomes:

f(x) = sign

(
n∑

i=1

αiyi⟨ϕ(xi), ϕ(x)⟩+ b

)
Here, the kernel function implicitly calculates the inner product ⟨ϕ(xi), ϕ(x)⟩

without explicitly mapping the data points to the feature space. This allows us
to work directly with the original input space, making the computation more
efficient.

Comparing to the equation we wrote earlier, now our classification function
becomes: ∑

i

αiyik(xi, x) + b

Usually, people choose from a set of commonly used kernel functions (based
on the problem and data, selecting different parameters essentially results in
different kernel functions). For example:

The polynomial kernel, obviously, the example we mentioned earlier is a
special case of the polynomial kernel (R = 1, d = 2). Although it may be
cumbersome and unnecessary, the mapping corresponding to this kernel can

actually be written out. The dimension of the resulting space is

(
(m+ d)

d

)
, where m is the dimension of the original space.

Gaussian kernel,k(xi, x) = exp
(
−∥xi−x∥2

2σ2

)
this kernel is the one mentioned

earlier that maps the original space to an infinite-dimensional space. However,

9



if the parameter is chosen to be large, the weights on higher-order features de-
cay rapidly, effectively representing a low-dimensional subspace (approximately,
numerically speaking). Conversely, if the parameter is chosen to be small, it is
possible to map any data to a linearly separable space. However, this may not
necessarily be desirable as it can lead to severe overfitting issues. Overall, the
Gaussian kernel exhibits significant flexibility through parameter tuning and is
one of the most widely used kernel functions. The example shown in the figure
below demonstrates the mapping of low-dimensional linearly inseparable data
to a high-dimensional space using the Gaussian kernel:

Figure 5: Gaussian kernal

Linear kernel, k(xi, x) = xi · x which is essentially the inner product in the
original space. The main purpose of this kernel is to unify the ”problem in the
mapped space” and the ”problem in the original space” in terms of their form.

After all the explanations above, readers may still not fully understand what
a kernel function actually is. Let me summarize it briefly in the following three
points:

In practice, we often encounter examples that are not linearly separable. In
such cases, our common approach is to map the example features to a higher-
dimensional space.

However, if we map all linearly non-separable examples to a high-dimensional
space without any consideration, the dimensionality can become overwhelmingly
large. What should we do then?

This is where the kernel function comes into play. The value of a kernel
function lies in the fact that it performs the feature transformation from a low-
dimensional space to a high-dimensional space, but it calculates the essential
classification effect on the low-dimensional space beforehand. It then manifests
this effect in the high-dimensional space, thus avoiding complex calculations
directly in the high-dimensional space, as mentioned earlier.

10



4.3 Sequential Minimal Optimization

After deriving various types of support vector machine (SVM) dual algo-
rithms, we have many optimization algorithms to solve this problem. However,
when the sample size is large, these algorithms can become very inefficient. To
address this issue, researchers have proposed several fast implementation algo-
rithms, and the SMO (Sequential Minimal Optimization) algorithm is one of
them.

This is the dual problem that we originally intended to solve.
αmax

∑n
i=1 αi − 1

2

∑n
i=1

∑n
j=1 αiαjyiyj⟨xi,xj⟩

s.t.
∑n

i=1 αiyi = 0
0 ≤ αi ≤ C, i = 1, 2, . . . , n

By using the kernel function and duality, we obtain the problem that our
SMO (Sequential Minimal Optimization) algorithm aims to solve.

min Ψ(α) = −
∑m

i=1 αi +
1
2

∑m
i=1

∑m
j=1 αiαjyiyjK(xi,xj)

s.t.
∑m

i=1 αiyi = 0
0 ≤ αi ≤ C, i = 1, 2, . . . ,m

SMO Algorithm Steps[3]:

1. Initialize the Lagrange multipliers αi for all training samples to zeros or
small random values.

2. Select two Lagrange multipliers αi and αj to optimize using a heuristic or
predetermined strategy.

3. Choose the corresponding training samples xi and xj associated with the
Lagrange multipliers αi and αj .

4. Compute the error for both samples using the current set of Lagrange
multipliers.

Ek = g(xk)− yk = (
∑N

l=1 αlylK(xl, xl) + b)− yk, k = i, j

5. Compute the bounds for the Lagrange multipliers αi and αj based on their
current values and the constraint αiyi + αjyj = constant.

0 ≤ αi=i,j ≤ C

αiyi + αjyj = ζ = −
∑N

l,j αiyi = constant

Figure 6: Bounds

11



The optimal solution must be on the line, thus:

L ≤ αnew
j ≤ H

if yi ̸= yj , L = max(0, αold
j − αold

i ), H = min(C,C + αold
j − αold

i )

if yi = yj , L = max(0, αold
i + αold

j − C), H = min(C,αold
j + αold

i )

6. Update the Lagrange multipliers αi and αj by solving the QP (Quadratic
Programming) subproblem:

min Q(αi, αj) =
1
2 (α

2
iKii + α2

jKjj)− (αiαj)Kij − (αiyi)− (αjyj)
subject to αiyi + αjyj = constant

0 ≤ αi ≤ C
0 ≤ αj ≤ C

We can get the α2 before clip:

αnew,unc
j = αold

j +
yj(Ei−Ej)

η
η = Kii +Kjj − 2Kij

7. Clip the updated Lagrange multipliers αj to satisfy the bounds and cal-
culate αi.

αnew
i = αold

i + yiyj(α
old
j − αnew

j )

8. Update the threshold value b

bnewi = yi −
∑N

l ̸=i,j αlylKli − αnew
i yiKii − αnew

j yjKji

= -Ei − yiKii(α
new
i − αold

i )− yjKji(α
new
j − αold

j ) + bold

bnewj = −Ej − yiKij(α
new
i − αold

i )− yjKjj(α
new
j − αold

j ) + bold

Update the threshold b based on the updated Lagrange multipliers and the
error of the support vectors. Repeat steps 2-8 until convergence or a maxi-
mum number of iterations is reached. Obtain the optimized set of Lagrange
multipliers i and the threshold b for classification.

Based on the above steps, we try to realize SMO by python and design a
brief demo, which would be attached behind.

The SMO algorithm iteratively selects pairs of Lagrange multipliers to op-
timize, updates them using a QP subproblem, and adjusts the threshold for
classification. This process continues until convergence, where the Lagrange
multipliers satisfy the Karush-Kuhn-Tucker (KKT) conditions or a stopping
criterion is met.

In summary, the basic idea of the SMO (Sequential Minimal Optimization)
algorithm is to maximize the efficiency of the Chunking method proposed by
Vapnik in 1982. The SMO algorithm selects only two Lagrange multipliers, αi

and αj , for adjustment in each iteration, while keeping the other multipliers
fixed. After obtaining the updated values of αi and αj , the algorithm improves
the remaining multipliers using these updated values. Compared to conventional
decomposition algorithms, although the SMO algorithm may require more it-
erations, each iteration involves a smaller computational cost. As a result, the
algorithm exhibits good convergence speed and does not require storing the
kernel matrix or performing matrix operations.

12



5 Coding

Next, we will introduce how to implement some SVM algorithms with com-
puter programs. Thanks to Python’s sklearn library, we don’t need to write
complex algorithms repeatedly in each experiment. Calling functions directly
makes solving some problems much easier. Note, however, that the code in
our report is incomplete, and details require opening the three accompanying
Python files.

5.1 Soft Margin

Let’s start with the implementation of soft margin. It is well known that soft
margin can well cancel out the interference of noise points, in other words, it
can accept a certain degree of error.

First, we need to read the data inside the file.

1 def npz_read(file_dir):

2 npz = np.load(file_dir)

3 data = npz[’data’]

4 label_list = npz[’label’]

5 npz.close()

6

7 return data, label_list

8

9 file_name = ’Dataset/9.npz’

10 data, label_list = npz_read(file_name)

Then there is the training of the test set.

1 def split_train_test(data, label_list):

2 xtrain, xtest, ytrain, ytest = train_test_split(data, label_list,

test_size=0.3)

3 return xtrain, xtest, ytrain, ytest

4 xtrain, xtest, ytrain, ytest = split_train_test(data, label_list)

This is followed by a direct call to the sklearn library method. Note the
setting of the C value size. The smaller the value is, the softer it will be;
otherwise, the harder it will be.

1 linear_svm = svm.SVC(kernel=’linear’, C=1)

The result see in Figure C=1.
In fact, soft margin do not require that our data be linearly separable, so

they tend to have a wider range of applications than hard margin.

5.2 Linear Indivisible and kernel Function

If the data set is completely linear and indivisible, and the accuracy of using
the soft interval model is low, consider other options, such as the following
figure:

Here are some common kernel choices:

13



Figure 7: C=1

14



Figure 8: Linear Indivisible

Linear kernel: can only solve linear separable problems, easy to use, strong
interpretation.

Polynomial kernel: makes linearly indivisible data linearly divisible by rais-
ing dimension. Can solve some nonlinear problems, the power number is too
large to apply.

Gaussian kernel: Also called RBF kernel, or radial basis kernel, the function
can be mapped to infinite dimensions (by Taylor series expansion) with only
one argument. It is easy to overfit, poor interpretability and slow calculation
speed.

Laplace kernel: The Laplace kernel is completely equivalent to the exponen-
tial kernel, with the only difference being that the former is less sensitive to
parameters and is also a radial basis kernel function.

Sigmoid kernel: also known as hyperbolic tangent kernel. When Sigmoid
function is used as kernel function, support vector machine is a multi-layer
perceptron neural network.

For the data in the figure above, we select the Gaussian kernel function.

1 rbf_svc = RBFKernelSVC(gamma=10)

The Gauss kernel in the scikit-learn library is:

K(x, y) = e−γ||x−y||2

15



Figure 9: Iris

The value is the reciprocal of the Gaussian function sigama, and the larger
the value, the narrower the Gaussian distribution, the more the model tends to
overfit, and the smaller the value, the more the model tends to underfit.

5.3 Multiple Classification Problem

For multi-classification problems, there are generally two solutions: The first
is the one-versus-rest method (OVR)

If we have four categories to divide (i.e., four labels), they are A, B, C, D. So
when we extract the training set, extract it separately:The vector corresponding
to A is taken as a positive set, and the vector corresponding to B, C and D is
taken as a negative set;And so on

During the test, the samples are classified and predicted by these four clas-
sifiers, and the one whose result is a positive set is the prediction result we
want.

The second one is the one-versus-one method.
The practice is to design a SVM between any two classes of samples, so

k(k1)/2 k(k1)/ 2k(k1)/2 SVMS are required for k kk classes of samples. When
an unknown sample is classified, the category with the most votes is the category
of the unknown sample. This strategy is called voting method.

16



Let’s say we have four categories A, B, C, and D. During the training, we
selected the corresponding vectors of (A, B), (A, C), (A, D), (B, C), (B, D) and
(C, D) as the training set, and then got six training results. During the test, we
tested the corresponding vectors against the six results respectively, and then
adopted the voting form, and finally got a set of results. When there are many
categories, the number of models is large and the cost is high.

Iris in this example has 150 data samples, divided into 3 categories with 50
data in each category, and each data contains 4 attributes. The four attributes
of calyx length, calyx width, petal length and petal width can be used to predict
which of the three categories of Virginica (Setosa, Versicolour and versicolour)
iris flowers belong to.

References

[1] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. 1992.
A training algorithm for optimal margin classifiers. In Proceedings of
the fifth annual workshop on Computational learning theory (COLT ’92).
Association for Computing Machinery, New York, NY, USA, 144–152.
https://doi.org/10.1145/130385.130401

[2] Cortes, C., Vapnik, V. Support-vector networks. Mach Learn 20, 273–297
(1995). https://doi.org/10.1007/BF00994018

[3] Platt, John. (1998). Sequential Minimal Optimization: A Fast Algorithm for
Training Support Vector Machines. Advances in Kernel Methods-Support
Vector Learning. 208.

17


