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ABSTRACT

Random Fourier Features (RFF) is a method to approximate the kernel function
k(·, ·) by a random feature map ϕ(·). It is considered as a breakthrough in kernel
methods, since it makes kernel methods scalable to large datasets. It is widely used
in kernel methods, such as Support Vector Machine (SVM), Gaussian Process
Regression (GPR), etc. In this paper, we conduct experiments to investigate the
effect of dimensionality and sampling distribution on the performance of RFF.
We also compare the performance of RFF with other kernel methods, such as
Support Vector Machine (SVM), Gaussian Process Regression (GPR), etc. We
find that RFF is sensitive to the dimensionality and sampling distribution. We also
find that RFF is comparable to other kernel methods in terms of accuracy, but it
is much faster than other kernel methods in terms of training and inference time.
Interestingly, we also find that RFF is comparable to other kernel methods in terms
of interpretability. Our code is available on GiHub Repo.

1 INTRODUCTION

Kernel methods are widely used in machine learning, such as Support Vector Machine (SVM),
Gaussian Process Regression (GPR), etc. However, kernel methods are not scalable to large datasets,
since they require computing the kernel function k(·, ·) for all pairs of data points. This requires
O(n2) time and O(n2) space, where n is the number of data points. This makes kernel methods
impractical for large datasets.

Random Fourier Features (RFF) is a method to approximate the kernel function k(·, ·) by a random
feature map ϕ(·). It is considered as a breakthrough in kernel methods, since it makes kernel methods
scalable to large datasets. It is widely used in kernel methods, such as Support Vector Machine
(SVM), Gaussian Process Regression (GPR), etc (Rahimi & Recht, 2007). In this paper, we conduct
experiments to investigate the effect of dimensionality and sampling distribution on the performance
of RFF. We also compare the performance of RFF with other kernel methods, such as Support
Vector Machine (SVM), Gaussian Process Regression (GPR), etc. We find that RFF is sensitive to
the dimensionality and sampling distribution. We also find that RFF is comparable to other kernel
methods in terms of accuracy, but it is much faster than other kernel methods in terms of training
and inference time.

The rest of this paper is organized as follows. In Section 2, we review related works. In Section 3,
we introduce the preliminaries of RFF. In Section 4, we describe the experiments we conducted. In
Section 5, we present the results of our experiments. In Section 6, we conclude our paper.

∗Equal Contribution. Wang Ma contributed the main ideas and led others, Qiang Hu was responsible for the
random feature experiment and analysis, Jingjuan Huang was responsible for the GPR experiment and analysis,
and Junjie Qiu assisted Hu Qiang in the experiment and led the writing.
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Our intuitions and motivations of following experiments are mainly inspired Jin et al. (2022) and Li
et al. (2022), thanks for their pioneering works!

Our main contributions are as follows:

• We conduct experiments to investigate the effect of dimensionality and sampling distribu-
tion on the performance of RFF.

• We compare the performance of RFF with other kernel methods, such as Support Vector
Machine (SVM), Gaussian Process Regression (GPR), etc.

• We find that RFF is sensitive to the dimensionality and sampling distribution.

• We find that RFF is comparable to other kernel methods in terms of accuracy, but it is much
faster than other kernel methods in terms of training and inference time.

• We find that RFF model is comparable to neural network in SHAP value.

2 RELATED WORKS

Random Fourier Features. Rahimi & Recht (2007) proposed Random Fourier Features (RFF) to
approximate the kernel function k(·, ·) by a random feature map ϕ(·). It is considered as a break-
through in kernel methods, since it makes kernel methods scalable to large datasets. It is widely used
in kernel methods, such as Support Vector Machine (SVM), Gaussian Process Regression (GPR),
etc (Rahimi & Recht, 2007).

Dimensions and Sampling Distributions: The dimensions of features and properties of sampling
distributions play a crucial role in the performance of RFF-based models. Studies have shown that
larger dimensions can lead to increased accuracy but at the cost of higher computational require-
ments (Gundersen (2019); Bottou (2018)).

RFF in Advanced Models: The application of RFF in advanced models like Efficient Transform-
ers showcases the versatility and potential of RFF in enhancing model performance and efficiency.
Recent works like performer (Choromanski et al., 2020) also use random features to approximate
the attention mechanism in Transformer, showing the effectiveness of this approach Koker (2020).

3 PRELIMINARIES

Random Fourier Features (Rahimi & Recht, 2007). Random Fourier Features (RFF) is a method
to approximate the kernel function k(·, ·) by a random feature map ϕ(·), which is defined as

ϕ(x) =

√
2

D
cos(ωTx+ b) (1)

where ω ∈ RD is a random vector and b ∈ R is a random scalar Avron et al. (2017).

Radial Basis Function (RBF) kernel functions. In the domain of kernel methodsGundersen
(2019), the Radial Basis Function (RBF) kernel stands out due to its remarkable properties in cap-
turing the non-linear relationships in data. The RBF kernel, also known as the Gaussian kernel, is
defined as K(x, x′) = exp(−γ∥x − x′∥2), where γ is a scale parameter and x, x′ are data points.
This kernel function, owing to its infinite dimensionality, facilitates an effective mapping of data into
a higher-dimensional spaceBottou (2018), enabling the linear separation of non-linearly separable
data patterns Buhmann (2003).

Remark on Coefficient of Determination. The coefficient of determination, denoted as R2, mea-
sures the proportion of the variance in the dependent variable that is predictable from the independent
variables in a regression model. It is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2)
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where n is the number of observations, yi is the observed value of the dependent variable for obser-
vation i, ŷi is the predicted value of the dependent variable for observation i, and ȳ is the mean of
the observed values of the dependent variable.

It is important to note that when estimating R2 without utilizing the method of Least Squares Esti-
mation (LSE), the coefficient of determination may assume negative values. This can occur due to
the absence of a systematic relationship between the independent and dependent variables, leading
to a model that performs worse than a simple mean-based predictor.

SHAP Values. SHAP values is to quantify the impact of each feature by considering its contri-
bution to every possible prediction. This holistic approach ensures that the contributions are fairly
distributed among the features, providing a clear understanding of the importance of each variable
in the model’s decision-making process. Mathematically, for a prediction f(x) made by a model
with features x, SHAP values are defined as the average marginal contribution of a feature across all
possible feature combinations:

SHAPi(f) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)] (3)

where N is the set of all features, S is a subset of features excluding i, and f(S) represents the
model’s prediction when considering only the features in subset S.

Permutation Feature Importance (Altmann et al., 2010). Permutation Feature Importance (PFI)
is a widely used technique in machine learning to assess the importance of individual features in
predictive models. Developed as a robust and model-agnostic approach, PFI provides insights into
the influence of each feature on the model’s performance by evaluating the impact of feature permu-
tations on predictive accuracy. The fundamental idea behind PFI involves systematically permuting
the values of a single feature while keeping the others unchanged and measuring the resulting change
in model performance. Specifically, for a model f(x) where x represents the feature vector, the Per-
mutation Feature Importance Ii for the i-th feature is computed as:

Ii =
1

K

K∑
k=1

(scorek − scorek,permuted) (4)

where scorek is the model’s performance metric (e.g., accuracy) on the original dataset, and
scorek,permuted is the performance metric on the dataset with the i-th feature permuted. K denotes the
number of permutations, and the larger the sample size, the more accurate the estimation of feature
importance.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Datasets. For classification, we consider MNIST (LeCun & Cortes, 2010). The MNIST dataset is a
widely used collection of handwritten digit images. MNIST contains a set of 28x28 pixel grayscale
images of handwritten digits (0 through 9). The dataset is split into a training set with 60,000
examples and a test set with 10,000 examples. Each image is labeled with the corresponding digit it
represents.

For regression, we consider dataset of California Housing. It provides a comprehensive set of fea-
tures(8 features including Hosing Price) related to housing characteristics in various districts across
California.

Models. We employ Support Vector Classifier(svc) (Cortes & Vapnik, 1995), Gaussian Process
Regression(GPR) (Williams & Rasmussen, 1995), RFFRegression (Rahimi & Recht, 2007) and
a customed neural network. And for svc, we consider the kernels including linear, radial basis
function, polynomial and sigmoid.
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Evaluation. The existing metrics used to evaluate the performance of a kernel machine includes
training time, inference time, accuracy score and R2, where training time and inference time indi-
cates the time spent to fit the model and classify a single example respectively. For classification the
accuracy score is applied and it can be formally represented as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

For Regression, R2 is applied and it can be represented as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

4.2 RESULTS

Performance of 4 baseline kernel methods for SVC

Kernel linear rbf polynomial sigmoid

Training time [sec] 33.1 24.3 18.7 64.6
Inference time [us] 306.6 1102.6 340.1 1353.5

Score [%] 94.5 97.4 97.9 84.93

Table 1: Performance of baseline kernel methods for SVC on mnist.

Among the four baseline kernel considered here, polynomial ≃ rbf > linear > sigmoid in terms
of accuracy score, and sigmoid > rbf >> polynomial > linear in terms of inference time. We
noticed that the inference consumed a lot for all four methods, and that’s where rff will improve
significantly.

4.2.1 INVESTIGATING TO THE DIMENSIONS OF FEATURES

We conduct an experiment to explore the effect of kernel dimension on Performance of rff. Here the
gaussian sampling and uniform sampling methods are chosen, and kernel dimension varies from 80
to 4096.

Kernel Dimension 80 160 320 640 1024 4096

Training time[sec] 7.3 14.7 20.5 31.6 41.6 126.6
Inference time[us] 7.7 10.2 19.4 23.0 30.6 109.6

Score[%] 89.0 92.7 95.0 96.5 97.2 98.3

Table 2: Performance of rff via Gaussian sampling methods for SVC on mnist

It can be seen that larger kernel dimension leads to higher score, as well as more train and inference
time. This makes sense because higher dimensions can represent more detail, leading to higher
accuracy. Unless additional statements, we use 1024 dimensions for the following experiments
because of its high accuracy and acceptable training and reasoning time.

Kernel dimension 80 160 320 640 1024 4096

Training time [sec] 9.7 16.2 31.1 70.8 130.0 335.7
Inference time [us] 7.0 12.6 10.2 28.0 27.3 104.6

Score [%] 88.2 92.2 93.4 94.6 95.1 96.0

Table 3: Performance of rff via uniform sampling methods for SVC on mnist
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For uniform sampling, it has a similar trend to Gaussian sampling. However, under the same di-
mension, it takes longer training time and has a consistently lower accuracy score than Gaussian
sampling.

4.2.2 INVESTIGATING TO THE PROPERTIES OF SAMPLING DISTRIBUTIONS

We change the standard deviation and mean of the distribution in Gaussian sampling to explore the
effect of the distribution properties on the performance of rff. It can be formulated as follows:

W = σ ·A+ µ

where W is the rff matrix, A ∼ Nm×n(0, 1), m and n are the input and output dimensions of the rff
matrix, σ and µ are the standard deviation and mean of Gaussian sampling respectively.

Influence of Std of Sampling Distribution

Here we alter std from 0 to 5, and records training time, inference time and accuracy score for each
std value. The following are the visualization of the result, and the exact numerical results are in the
appendix.
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Figure 1: Performance of rff via Gaussian sampling for SVC on MNIST(std 0 ∼ 5)

• For training time, a trough occurs when std ≃ 0.1. And both lower or higher std value
would leads to significantly larger time consumption.

• The inference time remain a stable level until std ≃ 0.05, after which it increased rapidly
and was accompanied by large fluctuations.

• The score is stably on high level between 0.001 and 0.1, and when the std is too large or
too small it can cause the score to drop rapidly to a random guess level.

Considering these three metrics(training time, inference time and accuracy score) comprehensively,
we could conclude that rbf with Std ≃ 0.05 perform best.

Influence of Mean of Sampling Distribution

We experiment the influence of mean in Gaussion sampling. Here we change the mean from 0 to
0.15 for kdim = 1024, and 0 to 0.075 for kdim = 128 respectively.

Mean 0 0.025 0.05 0.075 0.1 0.125 0.15

Training time [sec] 46.0 42.1 43.6 48.4 48.7 55.74 67.2
Inference time [us] 33.2 31.0 29.9 31.1 30.6 36.6 33.1

Score [%] 97.25 97.1 97.0 96.6 96.2 95.3 93.2

Table 4: Performance of rbf-rff with different mean on mnist. The kernel dimension is 1024.

We assert that the overall effect is best when mean is near 0.05, when the three trade-off metrics
reach balance, with smallest inference time and relatively good training time(+1.5sec) and score(-
0.25%).
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Mean 0 0.025 0.05 0.075

Training time [sec] 11.0 11.6 11.5 13.0
Inference time [us] 6.8 6.7 5.8 7.8

Score [%] 91.5 91.4 90.9 90.3

Table 5: Performance of rbf-rff with mean on mnist. The kernel dimension is 128.

The outcome for kdim = 128 is similar to that when kdim = 1024, and mean ≃ 0.05 also leads
to the best performance, which indicates that our results are unrelated to kernel dimensions within a
certain range.

4.2.3 COMBINATION OF HIGH FREQUENCY AND LOW FREQUENCY

As mentioned before, we assume that low-frequency information tends to describe the outline of the
data set, while high-frequency information tends to describe the details of the data set. Since that,
we try to combine high-frequency and low-frequency features, and study the effect of rff under such
integrated features. It can be formulated as follows:

W = σ · [A,B]

where A ∼ Nm×0.5n(0, 1) and B ∼ Nm×0.5n(bias, 1), m and n are dimension of input and output
of rff matrix W respectively. And here we change bias from 0.01 to 10.
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Figure 2: Visualization for performance of rff with the combination of high frequency and low
frequency, via Gaussian sampling for SVC on MNIST, kernel dim 1024

• The training time increases with the increase of bias. When bias¡1, training time maintained
at a low level; When bias is greater than 1, the training time increases rapidly (from about
95s to 113.76s).

• When bias varies from 0.01 to 10, the inference time drops first and then rises, reaching the
minimum when bias ≃ 0.05

• When the bias is less than 1, the accuracy score remains almost unchanged. However, when
the bias is greater than 1, the accuracy score begins to decline significantly.

The exact numerical results are in the following table. Therefore, we assert that bias ≃ 0.05 is
the best choice, since the inference time decreased a lot(-4.87s), while the training time and score
almost keep unchanged(< 1%) compared with bias ≃ 0
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Bias Training time[sec] Inference time[us] Score[%]

0 93.61 45.14 97.08
0.01 94.48 48.24 97.11
0.02 94.25 49.29 97.01
0.03 93.68 45.01 96.06
0.04 94.29 47.55 97.03
0.05 94.20 43.37 97.01
0.1 93.76 46.76 97.01
1 95.49 48.01 96.95
5 106.99 51.49 95.93

10 113.76 48.61 95.46

Table 6: Performance of rff via Gaussian sampling for SVC on MNIST, kernel dimension 1024

4.2.4 ANALYSIS OF CALIFORNIA HOUSING PRICE

Impact of Dimensionality on RFFGPR and RFFRegression R2 Scores

• At lower dimensions, RFFRegression outperforms.

• At higher dimensions, RFFGPR exhibits superior performance.

• With an increase in dimensionality, the performance of RFFGPR consistently improves,
while RFFRegression initially shows enhancement followed by a decline.

• It is interesting to see that RFFGPR maintains improvement even at dimensionality 4096;
in contrast, RFFRegression experiences a decline in R2 starting from dimensionality 128.

Kernel dimension 8 16 32 64 128 256 640 1024
RFFGPR 0.5498 0.6258 0.65 0.6604 0.6814 0.694 0.6972 0.6986

RFFRegression 0.5529 0.6258 0.647 0.6685 0.6611 0.6289 -3.2463 -67.5435

Table 7: R2 of RFFGPR & RFFRegression in different dimension

Variation of R2 in Neural Network Across Epochs

• As the number of epochs increases, there is a continuous improvement in the R2 score.
The increasing trend in R2 underscores the efficacy of the neural network in capturing
underlying patterns and enhancing its predictive capabilities over successive epochs.

Epochs 1 10 50 100 200 500 1000 2000 5000

Values -2.7107 -2.3972 -0.0652 0.394 0.5639 0.6782 0.7111 0.7374 0.7711

Table 8: R2 of NN in different epochs

Model Comparison We compared models with similar R2 scores, specifically employing RFFGPR
with a dimensionality of 128, RFFRegression with a dimensionality of 64, and a neural network
trained for 500 epochs. The analysis, utilizing SHAP values and Permutation Feature Importances,
revealed the following observations:

• Utilizing SHAP Values for Feature Extraction:

– Both models identified Latitude, Longitude, and Medinc as the top three most impor-
tant features.

– Both models ranked AveBedrms and Population as the least important features.

• Utilizing Permutation Feature Importances:

7



Project of STA303, fall 2023

– Both models identified Latitude, Longitude, and Medinc as the top three most impor-
tant features.

– Both models ranked AveOccup, HouseAge, and Population as the least important fea-
tures.

(a) SHAP Values (b) Permutation Importance

Figure 3: RFFGPR (dim = 128)

(a) SHAP Values (b) Permutation Importance

Figure 4: RFFRegression (dim = 64)

(a) SHAP Values (b) Permutation Importance

Figure 5: Neural Network (500 epochs)

5 CONCLUSIONS

In this paper, we investigate the effect of dimensionality and sampling distribution on the perfor-
mance of RFF. We also compare the performance of RFF with other kernel methods, such as Sup-
port Vector Machine (SVM), Gaussian Process Regression (GPR), etc. Our results supports the
following conclusions:

• RFF is sensitive to the dimensionality and sampling distribution.
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• RFF is comparable to other kernel methods in terms of accuracy, but it is much faster than
other kernel methods in terms of training and inference time.

• RFF is comparable to other kernel methods in terms of interpretability.

For further research, we can investigate the effect of other factors on the performance of RFF, such
as the number of samples, the statistical distribution type of the features, etc. In addition, every
matrix multiplication can be represented as a kernel function, so we can investigate the effect of
RFF on other matrix multiplication based methods, such as Graph Neural Networks (GNN), etc.
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A APPENDIX

Std Training time[sec] Inference time[us] Score[%]

0.05 61.1 37.7 97.1
0.1 30.5 36.5 96.7
0.2 32.5 46.3 95.3

0.25 35.6 35.1 93.8
0.3 57.5 35.4 91.0

0.35 84.8 38.5 84.3
0.4 113.3 43.4 70.7

0.42 129.6 36.6 64.5
0.44 125.5 35.3 57.9
0.46 140.8 35.6 52.5
0.48 149.5 41.6 47.2
0.5 168.2 35.5 41.9
1 162.0 40.4 15.9
2 194.8 37.2 10.0
5 158.7 43.6 10.1

Table 9: Performance of rff via gaussian methods for SVC on mnist (Transposed)
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